Problem: Let n be the number of integer values of x such that P=x4+6x3+11x2+3x+31 is the square of an integer. Then n is:
Answer Choices:
A. 4
B. 3
C. 2
D. 1
E. 0
Solution:
Let P=x4+6x3+11x2+3x+31=(x2+3x+1)2β3(xβ10)=y2
β΄(x2+3x+1)2βy2=3(xβ10). When x=10,P=(x2+3x+1)2
=1312=y2. To prove that 10 is the only possible value we use the following lemma: If β£Nβ£>β£Mβ£,N,M integers, then N2βM2β§2β£Nβ£β1 (This lemma is easy to prove, try it)
Case I If x>10, then 3(xβ10)=(x2+3x+1)2βy2β§2β£β£β£βx2+3x+1β£β£β£ββ1, an impossibility
Case II If x<10, then 3(10βx)=y2β(x2+3x+1)2β§2β£yβ£β1>2β£β£β£βx2+3x+1β£β£β£ββ1. This inequality holds for the integers x=2,1,0,β1,β2,β3,β4,β5,β6, but none of these values makes P the square of an integer.