Problem: Let (1+x+x2)n=a0β+a1βx+a2βx2+β―+a2nβx2n be an identity in x. If we let s=a0β+a2β+a4β+β―+a2nβ, then s equals:
Answer Choices:
A. 2n
B. 2n+1
C. 23nβ1β
D. 23nβ
E. 23n+1β
Solution:
(1βx+x2)nβ‘a0ββa1βx+a2βx2βa3βx3+β¦(1+x+x2)nβ‘a0β+a1βx+a2βx2+a3βx3+β¦
β΄2(a0β+a2βx2+a4βx4+β¦+a2nβx2n)β‘(1βx+x2)n+(1+x+x2)n
Let x=1β΄2(a0β+a2β+β¦+a2nβ)=1n+3nβ΄2s=1n+3nβ΄s=23n+1β