Problem: Let x2β3x+235xβ29β=xβ1N1ββ+xβ2N2ββ be an identity in x. The numerical value of N1β N2β is:
Answer Choices:
A. β246
B. β210
C. β29
D. 210
E. 246
Solution:
35xβ29β‘N1β(xβ2)+N2β(xβ1) is an identity in x. Letting x=1 we find N1β=β6 and letting x=2 we find N2β=41.β΄N1βN2β=β246