Problem: If x=(log8β2)(log2β8), then log3βx equals:
Answer Choices:
A. β3
B. β31β
C. 31β
D. 3
E. 9
Solution:
βlog2β8=3 and log8β2=31ββ΄x=(31β)3β΄log3βx=3log3β31β=β3(0β1)=β3β
or
Let y=log2β8(=3)β΄2y=8(=23)β΄ylog8β2=log8β8=1
β΄log8β2=y1ββ΄x=y1βy=yy1β=yβy
β΄log3βx=βylog3βy=β3(1)=β3