Problem: The roots of 64x3β144x2+92xβ15=0 are in arithmetic progression. The difference between the largest and smallest roots is:
Answer Choices:
A. 2
B. 1
C. 1/2
D. 3/8
E. 1/4
Solution:
Let the roots be aβd, a, and a+d. Then [xβ(aβd)](xβa)[xβa+d)]=x3β3ax2+x(3a2βd2) +(a3βad2)=0. But 64x3β144x2+92xβ15=64(x3β49βx2+1623βxβ6415β)=0β΄x3β49βx2+1623βxβ6415β=0 =x3β3ax2+x(3a2βd2)β(a3βad2)β΄β3a=β49β,a=43β and 3a2βd2=1623β,d2=164β,d=+21β or β21β. β΄ the roots are 45β,43β, and 41β, and the required difference is 1 .