Problem: Given plogaβ=qlogbβ=rlogcβ=logx, all logarithms to the same base and xξ =1. If acb2β=xy, then y is:
Answer Choices:
A. p+rq2β
B. 2qp+rβ
C. 2qβpβr
D. 2qβpr
E. q2βpr
Solution:
Since plogaβ=logx,a=xp. Similarly b=xq and c=xr.
β΄acb2β=xpβ
x5x2qβ=x2qβpβr. Since, also, acb2β=xy,y=2qβpβr.