Problem: A circle passes through the vertices of a triangle with side-lengths 721β, 10,1221β. The radius of the circle is:
Answer Choices:
A. 415β
B. 5
C. 425β
D. 435β
E. 2152ββ
Solution:
Method I. Since (721β)2+102=(1221β)2, the triangle is right with hypotenuse 1221β. Therefore, D=2R=1221β,R=25/4.
Method II. R=4 Kabcβ=4 s( sβa)(sβb)(sβc)βabcβ=415(221β)(5)(721β)β(1221β)(10)(721β)β=425β.