Problem: If all the logarithms are real numbers, the equality log(x+3)+log(xβ1)=log(x2β2xβ3) is satisfied for:
Answer Choices:
A. all real values of x
B. no real values of x
C. all real values of x except x=0
D. no real values of x except x=0
E. all real values of x except x=1
Solution:
log(x+3)+log(xβ1)=log(x2β2xβ3)β΄log(x+3)(xβ1)=log(x2β2xβ3). β΄x2+2xβ3=x2β2xβ3,x=0. But when x=0, neither log(xβ1) nor log(x2β2xβ3) is a real number.