Problem: Let Snβ=1β2+3β4+β¦+(β1)nβ1n,n=1,2,β¦ Then S17β+S33β+S50β equals:
Answer Choices:
A. 0
B. 1
C. 2
D. β1
E. β2
Solution:
Snβ=1β2+3β4+β¦+(β1)nβ1n,n=1,2,3,β¦
For n even, Snβ=1+2+3+β¦+nβ2(2+4+β¦+n)=21βn(n+1)β4β
21ββ
2nβ(1+2nβ)
β΄Snβ=21βn(n+1)β21βn(n+2)=β21βn
For n odd, Snβ=1+2+3+β¦+nβ2(2+4+β¦+(nβ1))
=21βn(n+1)β4β
21ββ
2nβ1β(1+2nβ1β)
β΄Snβ=21βn(n+1)β21β(nβ1)(n+1)=21β(n+1)
β΄S17β=9,S33β=17,S50β=β25β΄S17β+S33β+S50β=1 .