Problem: Define an operation * for positive real numbers as aβb=aba+ba * b=\dfrac{a b}{a+b}aβb=a+babβ. Then 4β(4β4)4^{*}(4 * 4)4β(4β4) equals:
Answer Choices:
A. 34\dfrac{3}{4}43β
B. 111
C. 43\dfrac{4}{3}34β
D. 222
E. 163\dfrac{16}{3}316β Solution:
4β4=4β 44+4=2β΄4β(4β4)=4β 24+2=434 * 4=\dfrac{4 \cdot 4}{4+4}=2 \qquad \therefore 4 *(4 * 4)=\dfrac{4 \cdot 2}{4+2}=\dfrac{4}{3}4β4=4+44β 4β=2β΄4β(4β4)=4+24β 2β=34β.