Problem: If f(n)=31βn(n+1)(n+2), then f(r)βf(rβ1) equals:
Answer Choices:
A. r(r+1)
B. (r+1)(r+2)
C. 31βr(r+1)
D. 31β(r+1)(r+2)
E. 31βr(r+1)(2r+1)
Solution:
f(r)βf(rβ1)=31βr(r+1)(r+2)β31β(rβ1)(r)(r+1)=31βr(r+1)(r+2βr+1)
=r(r+1).