Problem: The remainder R obtained by dividing x100 by x2β3x+2 is a polynomial of degree less than 2. Then R may be written as:
Answer Choices:
A. 2100β1
B. 2100(xβ1)β(xβ2)
C. 2100(xβ3)
D. x(2100β1)+2(299β1)
E. 2100(x+1)β(x+2)
Solution:
x100=Q(x)(x2+3x+2)+R(x)=Q(x)(xβ2)(xβ1)+R(x) where R(x)=ax+b.
β΄R(1)=1100=1=a+b and R(2)=2100=2a+b
β΄a=2100β1, b=2β2100.β΄R(x)=x(2100β1)+2β2100=xβ
2100βx+2β2100.
β΄R(x)=2100(xβ1)β(xβ2).