Problem: Let L ( m ) L(m)L ( m ) be the x xx -coordinate of the left end point of the intersection of the graphs of y = x 2 β 6 y=x^{2}-6y = x 2 β 6 and y = m y=my = m where β 6 < m < 6 -6<m<6β 6 < m < 6 . Let r = L ( β m ) β L ( m ) m r=\dfrac{L(-m)-L(m)}{m}r = m L ( β m ) β L ( m ) β . Then, as m mm is made arbitrarily close to zero, the value of r rr is:
Answer Choices:
A. arbitrarily close to zero
B. arbitrarily close to 1 6 \dfrac{1}{\sqrt{6}}6 β 1 β
C. arbitrarily close to 2 6 \dfrac{2}{\sqrt{6}}6 β 2 β
D. arbitrarily large
E. undetermined
Solution:
r = L ( β m ) β L ( m ) m = β 6 β m + 6 + m m r=\dfrac{L(-m)-L(m)}{m}=\dfrac{-\sqrt{6-m}+\sqrt{6+m}}{m}
r = m L ( β m ) β L ( m ) β = m β 6 β m β + 6 + m β β
β΄ r = β 6 β m + 6 + m m β
β 6 β m β 6 + m β 6 β m β 6 + m = β 2 m β m ( 6 β m + 6 + m ) \therefore r=\dfrac{-\sqrt{6-m}+\sqrt{6+m}}{m} \cdot \dfrac{-\sqrt{6-m}-\sqrt{6+m}}{-\sqrt{6-m}-\sqrt{6+m}}=\dfrac{-2 m}{-m(\sqrt{6-m}+\sqrt{6+m})}
β΄ r = m β 6 β m β + 6 + m β β β
β 6 β m β β 6 + m β β 6 β m β β 6 + m β β = β m ( 6 β m β + 6 + m β ) β 2 m β
β΄ r = 2 6 β m + 6 + m . As m β 0 , r β 2 6 + 6 = 1 6 \therefore r=\dfrac{2}{\sqrt{6-m}+\sqrt{6+m}} \text{. As }m \rightarrow 0, r \rightarrow \dfrac{2}{\sqrt{6}+\sqrt{6}}=\dfrac{1}{\sqrt{6}}
β΄ r = 6 β m β + 6 + m β 2 β . As m β 0 , r β 6 β + 6 β 2 β = 6 β 1 β