Problem: If the points (1,y1β) and (β1,y2β) lie on the graph of y=ax2+bx+c, and y1ββy2β=β6, then b equals:
Answer Choices:
A. β3
B. 0
C. 3
D. acβ
E. 2a+cβ
Solution:
y1β=a+b+c and y2β=aβb+cβ΄y1ββy2β=2b. Since y1ββy2β=β6,2b=β6,b=β3.