Problem: If x=1+2px=1+2^{p}x=1+2p and y=1+2βpy=1+2^{-p}y=1+2βp, then yyy in terms of xxx is
Answer Choices:
A. x+1xβ1\dfrac{x+1}{x-1}xβ1x+1β
B. x+2xβ1\dfrac{x+2}{x-1}xβ1x+2β
C. xxβ1\dfrac{x}{x-1}xβ1xβ
D. 2βx2-\mathrm{x}2βx
E. xβ1x\dfrac{x-1}{x}xxβ1β Solution:
xβ1=2p,yβ1=2βpβ΄(xβ1)(yβ1)=1β΄y=x/(xβ1)x-1=2^{p}, y-1=2^{-p} \therefore(x-1)(y-1)=1 \therefore y=x /(x-1)xβ1=2p,yβ1=2βpβ΄(xβ1)(yβ1)=1β΄y=x/(xβ1).