Problem: The smallest value of x2+8xx^{2}+8 xx2+8x for real values of xxx is
Answer Choices:
A. β16.25-16.25β16.25
B. β16-16β16
C. β15-15β15
D. β8-8β8
E. None of these Solution:
x2+8x=(x+4)2β16x^{2}+8 x=(x+4)^{2}-16x2+8x=(x+4)2β16 which is least (β16)(-16)(β16) when (x+4)2=0(x+4)^{2}=0(x+4)2=0 or when x=β4x=-4x=β4.