Problem: If log2β(log3β(log4βx))=log3β(log4β(log2βy))=log4β(log2β(log3βz))=0, then the sum x+y+z is equal to
Answer Choices:
A. 50
B. 58
C. 89
D. 111
E. 1296
Solution:
Since the antilog of 0 is 1 regardless of base, log3β(log4βx)=log4β(log2βy)= log2β(log3βz)=1 and hence log4βx=3,log2βy=4 and log3βz=2.β΄x+y+z=43+24 +32=89.