Problem: If the point (x,β4)(x,-4)(x,β4) lies on the straight line joining the points (0,8)(0,8)(0,8) and (β4,0)(-4,0)(β4,0) in the xyx yxy plane, then xxx is equal to
Answer Choices:
A. β2-2β2
B. 222
C. β8-8β8
D. 666
E. β6-6β6 Solution:
Equate the reciprocals of the slopes of the segments joining ( x,β4x,-4x,β4 ) with (0,8)(0,8)(0,8) and (β4,0)(-4,0)(β4,0) with (0,8)(0,8)(0,8) to get βx/12=4/8-x / 12=4 / 8βx/12=4/8. Hence x=β6x=-6x=β6.