Problem: Given the linear fractional transformation of x into f1β(x)=x+12xβ1β. Define fn+1β(x)= f1β(fnβ(x)) for n=1,2,3,β―. Assuming that f35β(x)=f5β(x), it follows that f28β(x) is equal to
Answer Choices:
A. x
B. x1β
C. xxβ1β
D. 1βx1β
E. None of these
Solution:
If g(x) is the inverse of the transformation f1β(x), then g(fn+1β(x))=fnβ(x). Since f35β(x)=f5β(x), successive application of this formula yields f31β(x)=f1β(x)β΄f30β(x) =g(f1β(x))=xβ΄f29β(x)=g(x)β΄f28β(x)=g(g(x)). But g(x)=2βxx+1ββ΄f28β(x)= g(g(x))=1βx1β.