Problem: 2β(2k+1)β2β(2kβ1)+2β2k2^{-(2 k+1)}-2^{-(2 k-1)}+2^{-2 k}2β(2k+1)β2β(2kβ1)+2β2k is equal to
Answer Choices:
A. 2β2k2^{-2 k}2β2k
B. 2β(2kβ1)2^{-(2 k-1)}2β(2kβ1)
C. β2β(2k+1)-2^{-(2 k+1)}β2β(2k+1)
D. 000
E. 222 Solution:
The given expression =2β2k(2β1β2+1)=β2β2k/2=β2β(2k+1)=2^{-2 k}\left(2^{-1}-2+1\right)=-2^{-2 k} / 2=-2^{-(2 k+1)}=2β2k(2β1β2+1)=β2β2k/2=β2β(2k+1) \quad