Problem: If x<β2 then β£1ββ£1+xβ£β£ equals
Answer Choices:
A. 2+x
B. β2βx
C. x
D. βx
E. β2
Solution:
By definition
β£aβ£={aβaβ₯0βaβa<0β
If x<β2, then 1+x<0 and 11+x+=β(1+x) and β£1ββ£1+xβ£β£=β£1+1+xβ£=β£2+xβ£. Again if x<β2, then 2+x<0 and β£2+xβ£=β2βx.