Problem: If i2=β1, then (1+i)20β(1βi)20 equals
Answer Choices:
A. β1024
B. β1024i
C. 0
D. 1024
E. 1024i
Solution:
Since i2=β1,(1+i)2=2i and (1βi)2=2i. Writing (1+i)20β(1βi)20=((1+i)2)10β((1βi)2)10. we have (1+i)20β(1β1)20=(2i)10β(β2i)10=0.