Problem: Let T=3β8β1ββ8ββ7β1β+7ββ6β1ββ6ββ5β1β+5ββ21β; then
Answer Choices:
A. T<1
B. T=1
C. 1<T<2
D. T>2
E. T=(3β8β)(8ββ7β)(7ββ6β)(6ββ5β)(5ββ2)1β
Solution:
By rationalizing the denominator of each function, we see
T=(3+8β)β(8β+7β)+(7β+6β)β(6β+5β)+(5β+2)=3+2=5