Problem: The minimum value of sin2Aββ3βcos2Aβ is attained when A is
Answer Choices:
A. β180β
B. 60β
C. 120β
D. 0β
E. none of these
Solution:
Writing
sin2Aββ3βcos2Aββ=2[21βsin2Aββ23ββcos2Aβ]=2sin(2Aββ60β)β=2[cos60βsin2Aββsin60βcos2Aβ]β
we see that the last expression is minimum when sin(2Aββ60β)ββ1 or when
2Aββ60β=270β+(360 m)β,m=0,Β±1,Β±2,β―
Solving for A we get a minimum when
A=660β+(720 m)2,m=0,Β±1,Β±2,β―.
None of (A) through (D) satisfy this equation.