Problem: Let a,b and x be positive real numbers distinct from one. Then
4(logaβx)2+3(logbβx)2=8(logaβx)(logbβx)
Answer Choices:
A. For all values of a,b and x
B. If and only if a=b2
C. If and only if b=a2
D. If and only if x=ab
E. For none of these
Solution:
The given equation may be written in the form
4(logaβx)2β8(logaβx)(logbβx)+3(logbβx)2=0(2logaβxβlogbβx)(2logaβxβ3logbβx)=0logaβx2=logbβx or logaβx2=logbβx3β
Let r=logaβx2. Then
ar=x2 and br=x, or ar=x2 and br=x3;ar=b2r or a3r=b2r;a=b2 or a3=b2.β