Problem: If f(x) is a real valued function of the real variable x, and f(x) is not identically zero, and for all a and b,
f(a+b)+f(aβb)=2f(a)+2f(b),
then for all x and y
Answer Choices:
A. f(0)=1
B. f(βx)=βf(x)
C. f(βx)=f(x)
D. f(x+y)=f(x)+f(y)
E. there is a positive number T such that f(x+T)=f(x)
Solution:
Choosing a=b=0 yields
2f(0)f(0)β=4f(0)=0β
Choosing a=0 and b=βx yields
f(x)+f(βx)f(x)β=2f(0)+2f(βx)=f(βx)β
Note: A continuous function f satisfies the functional equation if and only if f(x)=cx2 for some fixed number c and for all x.