Problem: If a,b and d are the lengths of a side, a shortest diagonal and a longest diagonal, respectively, of a regular nonagon, then
Answer Choices:
A. d=a+b
B. d2=a2+b2
C. d2=a2+ab+b2
D. b=2a+dβ
E. b2=ad
Solution:
In the adjoining figure, P1βP2ββ―P9β is a regular nonagon; P1βP2β=a; P2βP4β=b;P1βP5β=d;Q and R lie on P1βP5β;P2βQβ₯P1βP5β;P4βRβ₯P1βP5β. Since P2βP3β=P3βP4β and the interior angles of a regular nonagon are each
(9180(9β2)β)β=140β
β P3βP2βP4β=20β. Hence β P1βP2βQ=30β and P1βQ=2aβ. Similarly, P5βR=2aβ. Thus d=a+b.