Problem: For all positive numbers x distinct from 1,
log3βx1β+log4βx1β+log5βx1β
equals
Answer Choices:
A. log60βx1β
B. logxβ601β
C. (log3βx)(log4βx)(log5βx)1β
D. (log3βx)+(log4βx)+(log5βx)12β
E. (log3βx)(log5βx)log2βxβ+(log2βx)(log5βx)log3βxβ+(log2βx)(log3βx)log5βxβ
Solution:
If y=logaβb, then ay=b and a=b1/y. Thus
logbβa=y1β=logaβb1β
Thereiore,
βlog3βx1β+log4βx1β+log5βx1β=logxβ3+logxβ4+logxβ5=logxβ60=log60βxiβ.β