Problem: If the distinct non-zero numbers x(yβz),y(zβx),z(xβy) form a geometric progression with common ratio r, then r satisfies the equation
Answer Choices:
A. r2+r+1=0
B. r2βr+1=0
C. r4+r2β1=0
D. (r+1)4+r=0
E. (rβ1)4+r=0
Solution:
Let a=x(yβz) and observe that the identity
x(yβz)+y(zβx)+z(xβy)=0
implies
a+ar+ar21+r+r2β=0=0.β