Problem: For all non-zero real numbers xxx and yyy such that xβy=xy,1xβ1yx-y=x y, \dfrac{1}{x}-\dfrac{1}{y}xβy=xy,x1ββy1β equals
Answer Choices:
A. 1xy\dfrac{1}{x y}xy1β
B. 1xβy\dfrac{1}{x-y}xβy1β
C. 000
D. β1-1β1
E. yβxy-xyβx Solution:
1xβ1y=yxyβxxy=βxyxy=β1\dfrac{1}{x}-\dfrac{1}{y}=\dfrac{y}{x y}-\dfrac{x}{x y}=\dfrac{-x y}{x y}=-1x1ββy1β=xyyββxyxβ=xyβxyβ=β1.