Problem:
If b>1,sinx>0,cosx>0 and logbβsinx=a, then logbβcosx equals
Answer Choices:
A. 2logbβ(1βba/2)
B. 1βa2β
C. ba2
D. 21βlogbβ(1βb2a)
E. none of these
Solution:
logbβsinx=a;sinx=ba;
sin2x=b2a;cosx=(1βb2a)1/2;
logbβcosx=21βlogbβ(1βb2a).