Problem:
The sum 35+213ββ+35β213ββ equals
Answer Choices:
A. 23β
B. 4365ββ
C. 21+613ββ
D. 32β
E. none of these
Solution:
Let a=35+213ββ,b=35β213ββ and x=a+b. Then
βx3=a3+3a2b+3ab2+b3x3=a3+b3+3ab(a+b)x3=10+33β27βxβ
The last equation is equivalent to x3+9xβ10=0, or (xβ1)(x2+x+10)=0, whose only real solution is x=1.