Problem:
If b>1,x>0 and (2x)logbβ2β(3x)logbβ3=0, then x is
Answer Choices:
A. 2161β
B. 61β
C. 1
D. 6
E. not uniquely determined
Solution:
For this solution write log for logbβ. The given equation is equivalent to
(2x)log23log32log2β3log3β2log2ββ=(3x)log3=xlog2xlog3β=xlog3βlog2β
Equating the logarithm of the left and right members of the last equality above yields
(log2)2β(log3)2β(log2+log3)log61β61ββ=(log3βlog2)logx=logx=logx=x.β