Problem:
If a β©Ύ 1 a \geqslant 1a β©Ύ 1 , then the sum of the real solutions of
a β a + x = x \sqrt{a-\sqrt{a+x}}=x
a β a + x β β = x
is equal to
Answer Choices:
A. a β 1 \sqrt{a}-1a β β 1
B. a β 1 2 \dfrac{\sqrt{a}-1}{2}2 a β β 1 β
C. a β 1 \sqrt{a-1}a β 1 β
D. a β 1 2 \dfrac{\sqrt{a-1}}{2}2 a β 1 β β
E. 4 a β 3 β 1 2 \dfrac{\sqrt{4 a-3}-1}{2}2 4 a β 3 β β 1 β
Solution:
Since x xx is the principal square root of some quantity, x β©Ύ 0 x \geqslant 0x β©Ύ 0 . For x β©Ύ 0 x \geqslant 0x β©Ύ 0 , the given equation is equivalent to
a β a + x = x 2 a-\sqrt{a+x}=x^{2}
a β a + x β = x 2
Since the left member of this equation is a decreasing function of x xx and the right member is an increasing function, one easily verifies that the equation has exactly one solution. To find this solution let y = a + x y=\sqrt{a+x}y = a + x β . Then
a β y = x 2 a β y β y 2 = x 2 β y 2 a β y β ( a + x ) = x 2 β y 2 β ( x + y ) = ( x + y ) ( x β y ) 0 = ( x + y ) ( x β y + 1 ) \begin{gathered}
a-y=x^{2} \\
a-y-y^{2}=x^{2}-y^{2} \\
a-y-(a+x)=x^{2}-y^{2} \\
-(x+y)=(x+y)(x-y) \\
0=(x+y)(x-y+1)
\end{gathered}
a β y = x 2 a β y β y 2 = x 2 β y 2 a β y β ( a + x ) = x 2 β y 2 β ( x + y ) = ( x + y ) ( x β y ) 0 = ( x + y ) ( x β y + 1 ) β
Since a β©Ύ 1 a \geqslant 1a β©Ύ 1 and x β©Ύ 0 x \geqslant 0x β©Ύ 0 , it follows that y > 0 y>0y > 0 and x + y β 0 x+y \neq 0x + y ξ = 0 . Therefore,
x β y + 1 = 0 x + 1 = y x + 1 = a + x ( x + 1 ) 2 = a + x x = β 1 Β± 4 a β 3 2 . \begin{gathered}
x-y+1=0 \\
x+1=y \\
x+1=\sqrt{a+x} \\
(x+1)^{2}=a+x \\
x=\dfrac{-1 \pm \sqrt{4 a-3}}{2} .
\end{gathered}
x β y + 1 = 0 x + 1 = y x + 1 = a + x β ( x + 1 ) 2 = a + x x = 2 β 1 Β± 4 a β 3 β β . β
The positive solution x = 4 a β 3 β 1 2 x=\dfrac{\sqrt{4 a-3}-1}{2}x = 2 4 a β 3 β β 1 β is the sum.