Problem:
Let f(x)=ax7+bx3+cxβ5, where a,b and c are constants. If f(β7)=7, then f(7) equals
Answer Choices:
A. β17
B. β7
C. 14
D. 21
E. not uniquely determined
Solution:
Since f(x)=ax7+bx3+cxβ5,
f(βx)=a(βx)7+b(βx)3+c(βx)β5
Therefore, f(x)+f(βx)=β10 and f(7)+f(β7)=β10.
Hence, since f(β7)=7,f(7)=β17.