Problem:
If log7β(log3β(log2βx))=0, then xβ1/2 equals
Answer Choices:
A. 31β
B. 23β1β
C. 33β1β
D. 42β1β
E. none of these
Solution:
log7β(log3β(log2βx))=0ββlog3β(log2βx)=1βlog2βx=3βx=23=8β
So xβ1/2=8β1β=22β1β.