Problem:
Find the smallest positive number from the numbers below.
Answer Choices:
A. 10β311β
B. 311ββ10
C. 18β513β
D. 51β1026β
E. 1026ββ51
Solution:
Since 102=100>99=(311β)2,
β182=324<325=(513β)2,512=2601>2600=(1026β)2,β
only (A) and (D) are positive numbers.
Moreover, since aβb=a+ba2βb2β, 10β311β=10+311β1ββ201β and 51β1026β=51+1026β1ββ1021β.
So (D) is the answer.