Problem:
If the sequence {anβ} is defined by
βa1β=2an+1β=anβ+2n(nβ₯1)β
then a100β equals
Answer Choices:
A. 9900
B. 9902
C. 9904
D. 10100
E. 10102
Solution:
From the definition of the sequence,
a2ββa1βa3ββa2ββ―a100ββa99ββ=2β
1,=2β
2,=2β
99.β
Adding, one obtains
a100ββa1βa100ββ=2(1+2+β―+99)=99β
100=9900,=9902.β