Problem: If x,yx, yx,y and yβ1xy-\dfrac{1}{x}yβx1β are not 000, then
xβ1yyβ1x equals \dfrac{x-\dfrac{1}{y}}{y-\dfrac{1}{x}} \quad \text { equals } yβx1βxβy1ββ equals
Answer Choices:
A. 111
B. xy\dfrac{x}{y}yxβ
C. yx\dfrac{y}{x}xyβ
D. xyβyx\dfrac{x}{y}-\dfrac{y}{x}yxββxyβ
E. xyβ1xyxy-\dfrac{1}{xy}xyβxy1β
Solution:
xβ1yyβ1x=xyβ1yxyβ1x=xyβ1yβ xxyβ1=xy\dfrac{x-\dfrac{1}{y}}{y-\dfrac{1}{x}}=\dfrac{\dfrac{x y-1}{y}}{\dfrac{x y-1}{x}}=\dfrac{x y-1}{y} \cdot \dfrac{x}{x y-1}=\dfrac{x}{y}yβx1βxβy1ββ=xxyβ1βyxyβ1ββ=yxyβ1ββ xyβ1xβ=yxβ.