Problem:
cos10β+cos20βsin10β+sin20ββ equals
Answer Choices:
A. tan10β+tan20β
B. tan30β
C. 21β(tan10β+tan20β)
D. tan15β
E. 41βtan60β
Solution:
Two trigonometric identities for expressing sums as products are:
βsinx+siny=2sin2x+yβcos2xβyβcosx+cosy=2cos2x+yβcos2xβyβ.β
Thus cos10β+cos20βsin10β+sin20ββ=cos15βsin15ββ=tan15β.