Problem:
If A=20β and B=25β, then the value of (1+tanA)(1+tanB) is
Answer Choices:
A. 3β
B. 2
C. 1+2β
D. 2(tanA+tanB)
E. none of these
Solution:
We show that for any angles A and B for which the tangent function is defined and A+B=45β,(1+tanA)(1+tanB)=2. By the addition law for tangents,
1=tan45β=tan(A+B)=1βtanAtanBtanA+tanBβ,1βtanAtanB=tanA+tanB,1=tanA+tanB+tanAtanBβ
Thus
(1+tanA)(1+tanB)β=1+tanA+tanB+tanAtanB=1+1=2.β