Problem:
If βxβ is the greatest integer less than or equal to x, then
N=1β1024ββlog2βNβ=
Answer Choices:
A. 8192
B. 8204
C. 9218
D. βlog2β(1024!)β
E. none of these
Solution:
βlog2βNβ=β©βͺβͺβͺβͺβͺβͺβͺβ¨βͺβͺβͺβͺβͺβͺβͺβ§β12910β for for β
β
for for β2β€N<2222β€N<23β
β
29β€N<210N=210β
Thus the desired sum is
β1(22β2)+2(23β22)+3(24β23)+β―+9(210β29)+10=9β
210β(29+28+27+β―+2)+10=9β
210β(29+28+27+β―+2+1)+11=9β
210β(210β1)+11=8β
210+12=8(1024)+12=8204β
where we have used the sum formula for a geometric series to obtain the next to last line.