Problem: Simplify (276β634)2\left(\sqrt[6]{27}-\sqrt{6 \dfrac{3}{4}}\right)^{2}(627ββ643ββ)2.
Answer Choices:
A. 34\dfrac{3}{4}43β
B. 32\dfrac{\sqrt{3}}{2}23ββ
C. 334\dfrac{3 \sqrt{3}}{4}433ββ
D. 32\dfrac{3}{2}23β
E. 332\dfrac{3 \sqrt{3}}{2}233ββ
Solution:
(276β634)2=[(33)1/6β(274)1/2]2=[3β332]2=[β32]2=34\begin{aligned} \left(\sqrt[6]{27}-\sqrt{6 \dfrac{3}{4}}\right)^{2}= & {\left[\left(3^{3}\right)^{1 / 6}-\left(\dfrac{27}{4}\right)^{1 / 2}\right]^{2}=\left[\sqrt{3}-\dfrac{3 \sqrt{3}}{2}\right]^{2} } \\ & =\left[\dfrac{-\sqrt{3}}{2}\right]^{2}=\dfrac{3}{4} \end{aligned} (627ββ643ββ)2=β[(33)1/6β(427β)1/2]2=[3ββ233ββ]2=[2β3ββ]2=43ββ