Problem: (1+x2)(1βx3)\left(1+x^{2}\right)\left(1-x^{3}\right)(1+x2)(1βx3) equals
Answer Choices:
A. 1βx51-x^{5}1βx5
B. 1βx61-x^{6}1βx6
C. 1+x2βx31+x^{2}-x^{3}1+x2βx3
D. 1+x2βx3βx51+x^{2}-x^{3}-x^{5}1+x2βx3βx5
E. 1+x2βx3βx61+x^{2}-x^{3}-x^{6}1+x2βx3βx6
Solution:
(1+x2)(1βx3)=1(1+x2)βx3(1+x2)=1+x2βx3βx5.\begin{aligned} \left(1+x^{2}\right)\left(1-x^{3}\right)&=1\left(1+x^{2}\right)-x^{3}\left(1+x^{2}\right)\\ &=1+x^{2}-x^{3}-x^{5}. \end{aligned} (1+x2)(1βx3)β=1(1+x2)βx3(1+x2)=1+x2βx3βx5.β