Problem:
Evaluate
10 ( tan β‘ 1 β ) + 10 ( tan β‘ 2 β ) + 10 ( tan β‘ 3 β ) + β― + 10 ( tan β‘ 8 8 β ) + 10 ( tan β‘ 8 9 β ) \begin{gathered}
\log _{10}\left(\tan 1^{\circ}\right)+\log _{10}\left(\tan 2^{\circ}\right)+\log _{10}\left(\tan 3^{\circ}\right)+\cdots+ \\
\log _{10}\left(\tan 88^{\circ}\right)+\log _{10}\left(\tan 89^{\circ}\right)
\end{gathered}
log 1 0 β ( tan 1 β ) + log 1 0 β ( tan 2 β ) + log 1 0 β ( tan 3 β ) + β― + log 1 0 β ( tan 8 8 β ) + log 1 0 β ( tan 8 9 β ) β
Answer Choices:
A. 0 00
B. 1 2 10 ( 1 2 3 ) \dfrac{1}{2} \log_{10}(\dfrac{1}{2} \sqrt{3})2 1 β log 1 0 β ( 2 1 β 3 β )
C. 1 2 10 2 \dfrac{1}{2} \log_{10} 22 1 β log 1 0 β 2
D. 1 11
E. none of these
Solution:
Using log β‘ a + log β‘ b = log β‘ a b \log a+\log b=\log a blog a + log b = log a b repeatedly, we find that the sum is
P = 10 [ ( tan β‘ 1 β ) ( tan β‘ 2 β ) β― ( tan β‘ 4 5 β ) β― ( tan β‘ 8 9 β ) ] P=\log _{10}\left[\left(\tan 1^{\circ}\right)\left(\tan 2^{\circ}\right) \cdots\left(\tan 45^{\circ}\right) \cdots\left(\tan 89^{\circ}\right)\right]
P = log 1 0 β [ ( tan 1 β ) ( tan 2 β ) β― ( tan 4 5 β ) β― ( tan 8 9 β ) ]
Moreover, ( tan β‘ 1 β ) ( tan β‘ 8 9 β ) = 1 , ( tan β‘ 2 β ) ( tan β‘ 8 8 β ) = 1 \left(\tan 1^{\circ}\right)\left(\tan 89^{\circ}\right)=1, \quad\left(\tan 2^{\circ}\right)\left(\tan 88^{\circ}\right)=1( tan 1 β ) ( tan 8 9 β ) = 1 , ( tan 2 β ) ( tan 8 8 β ) = 1 , and so on, because tan β‘ ΞΈ tan β‘ ( 90 β ΞΈ ) = tan β‘ ΞΈ cot β‘ ΞΈ = 1 \tan \theta \tan (90-\theta)=\tan \theta \cot \theta=1tan ΞΈ tan ( 9 0 β ΞΈ ) = tan ΞΈ cot ΞΈ = 1 for all ΞΈ \thetaΞΈ at which both tan β‘ ΞΈ \tan \thetatan ΞΈ and cot β‘ ΞΈ \cot \thetacot ΞΈ are defined. Thus
P = 10 ( tan β‘ 4 5 β ) = 10 1 = 0 P=\log _{10}\left(\tan 45^{\circ}\right)=\log _{10} 1=0
P = log 1 0 β ( tan 4 5 β ) = log 1 0 β 1 = 0