Problem:
For any real number a and positive integer k, define
(kaβ)=k(kβ1)(kβ2)β―(2)(1)a(aβ1)(aβ2)β―(aβ(kβ1))β
What is
(100β21ββ)Γ·(10021ββ)?
Answer Choices:
A. β199
B. β197
C. β1
D. 197
E. 199
Solution:
The answer is
100!(β21β)(β23β)β―(β21ββ98)(β21ββ99)βΓ·100!(21β)(β21β)(β23β)β―(21ββ99)β=21β(β21ββ99)β=β199β