Problem:
In β³ABC,AB=5,BC=7,AC=9 and D is on AC with BD=5. Find the ratio AD:DC.
Answer Choices:
A. 4:3
B. 7:5
C. 11:6
D. 13:5
E. 19:8
Solution:
Apply the Law of Cosines to β³BAC to find cosA=3019β. Let H be the foot of the altitude from B. Then
AD=2β
AH=2β
ABcosA=319β
Thus DC=38β and AD:DC=19:8.
OR
Let H be the foot of the altitude from B. Then, by the Pythagorean Theorem,
52βAH2=BH2=72β(9βAH)2
so AH=619β,AD=2β
AH=319β. Thus AD:DC=AD:(9βAD)=19:8.