Problem: (14)β14=\left(\dfrac{1}{4}\right)^{-\dfrac{1}{4}}=(41β)β41β=
Answer Choices:
A. β16-16β16
B. β2-\sqrt{2}β2β
C. β116-\dfrac{1}{16}β161β
D. 1256\dfrac{1}{256}2561β
E. 2\sqrt{2}2β
Solution:
(14)β14=(122)β14=(2β2)β14=224=212=2\binom{1}{4}^{-\dfrac{1}{4}}=\binom{1}{2^{2}}^{-\dfrac{1}{4}}=\left(2^{-2}\right)^{-\dfrac{1}{4}}=2^{\dfrac{2}{4}}=2^{\dfrac{1}{2}}=\sqrt{2}(41β)β41β=(221β)β41β=(2β2)β41β=242β=221β=2β.