Problem:
If x,y>0,logyβx+logxβy=310β and xy=144, then 2x+yβ=
Answer Choices:
A. 122β
B. 133β
C. 24
D. 30
E. 36
Solution:
Let v=logyβx. Then, since logxβy=v1β, we solve v+v1β=310β to find logyβx=v=3 or 31β. Without loss of generality, assume x>y. Then logyβx=3,x=y3 and xy=y4=144 so that y=12β=23β,x=243β and 2x+yβ=2243β+23ββ=133β.