Problem:
If for any three distinct numbers a,b and c we define a,b,cβ by
a,b,cβ=cβbc+aβ,
then 1,β2,β3β=
Answer Choices:
A. β2
B. β52β
C. β41β
D. 52β
E. 2
Solution:
If a=1,b=β2 and c=β3, then a,b,cβ=cβbc+aβ=β3+2β3+1β=β1β2β=2.